Building Convivial Educational Tools in the 21st Century: a Proposal based on the Ideas of Freire and Illich

Ana Jofre, Kristina Boylan, Ibrahim Yucel


Ivan Illich famously coined the term «tools for conviviality» in which he refers to tools that encourage individual creativity and expression, and that can be adapted to people’s needs and situations. This paper describes the design of an interactive adaptable tool, whose applications include education and game play, and contextualizes it within Illich’s framework. The Collaborative Interactive Tabletop for Education (CITE), currently being developed at SUNY Polytechnic, allows users to manipulate digital information through the manipulation of hand-held tabletop objects. Such interfaces, known as Tangible User Interfaces (TUI), are believed to have significant advantages over traditional screen-based interfaces. For example, they have been shown to measurably increase collaborative behavior among users. However, TUIs have not been widely adopted, perhaps because most current TUI designs require some kind of specialized hardware. Our approach is to instead create a system, a set of verified instructions along with open-license software packages, for adapting any combination of standard computer hardware into a highly customizable interactive tabletop.


Design; Educational Technology; Inclusive Education; Educational Software


Blasco-Arcas, L., Buil, I., Hernández-Ortega, B., & Sese, F. J. (2013). Using clickers in class. The role of interactivity, active collaborative learning and engagement in learning performance. Computers & Education, 62, 102-110. doi:

Boyd, D. (2016). What Would Paulo Freire Think of Blackboard (TM): Critical Pedagogy in an Age of Online Learning. International Journal of Critical Pedagogy, 7(1), 166-186.

Braille Authority of North America. (2010). Guidelines and Standards for Tactile Graphics.

Bruno Jofre, R., & Igelmo Zaldivar, J. (2012). Ivan Illich’s Late Critique of «Deschooling Society»: «I Was Largely Barking Up the Wrong Tree». Educational Theory, 62(5), 573-592.

Chandrasekera, T., & Yoon, S.-Y. (2015). The Effect of Tangible User Interfaces on Cognitive Load in the Creative Design Process. 2015 IEEE International Symposium on Mixed and Augmented Reality - Media, Art, Social Science, Humanities and Design, 6–8. doi:

Chibaudel, Q., Johal, W., Oriola, B., Macé, M. J.-M., Dillenbourg, P., Tartas, V., & Jouffrais, C. (2020). «If you’ve gone straight, now, you must turn left». Exploring the use of a tangible interface in a collaborative treasure hunt for people with visual impairments. ASSETS’20. doi:

Counsell, C., Arthur, ed. J., & Phillips, ed. R. (2009). Historical Knowledge and Historical Skills: A Distracting Dichotomy. In Issues in History Teaching (pp. 54-71). RoutledgeFalmer.

De Raffaele, C., Smith, S., & Gemikonakli, O. (2018). An Active Tangible User Interface Framework for Teaching and Learning Artificial Intelligence. 23rd International Conference on Intelligent User Interfaces, 535–546.

Feenberg, A. (2002). Transforming Technology: A Critical Theory Revisited (Revised edition). Oxford University Press.

Follmer, S., Leithinger, D., Olwal, A., Hogge, A., & Ishii, H. (2013). inFORM: Dynamic Physical Affordances and Constraints Through Shape and Object Actuation. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, 417-426. doi:

Gee, J. P. (2007). What Video Games Have to Teach Us About Learning and Literacy (2nd Ed.). Palgrave Macmillan.

Glassman, M. (2018). DeMOOCing Society: Convivial Tools to Systems and Back Again in the Information Age. Educational Philosophy and Theory, 51(14), 1413-1422. doi:

Henry, S. L. (2018, February 27). Essential Components of Web Accessibility. Web Accessibility Initiative.

Holmes, K. (2018). Mismatch: How Inclusion Shapes Design. The MIT Press.

Illich, I. (2001). Tools for Conviviality. Marion Boyars.

Jofre, A., Szigeti, S., Keller, S. T., Dong, L.-X., Czarnowski, D., Tomé, F., & Diamond, S. (2015). A Tangible User Interface for Interactive Data Visualization. Proceedings of the 25th Annual International Conference on Computer Science and Software Engineering, 244-247.

Jofre, A., Szigeti, S., Tiefenbach-Keller, S., Dong, L.-X., & Diamond, S. (2016). Manipulating Tabletop Objects to Interactively Query a Database. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 3695-3698. doi:

Kahn, R., & Kellner, D. (2007). Paulo Freire and Ivan Illich: Technology, Politics, and the Reconstruction of Education. Policy Futures in Education, 5(4), 431-448. doi:

Kaltenbrunner, M., & Bencina, R. (2007). reacTIVision: A Computer-vision Framework for Table-based Tangible Interaction. Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 69-74.

Kaltenbrunner, M., Bovermann, T., Bencina, R., & Costanza, E. (2005). TUIO: A protocol for table-top tangible user interfaces. Proc. of the The 6th Int’l Workshop on Gesture in Human-Computer Interaction and Simulation, 1-5.

Kell, H. J., Lubinski, D., Benbow, C. P., & Steiger, J. H. (2013). Creativity and Technical Innovation: Spatial Ability’s Unique Role. Psychological Science, 24(9), 1831-1836.

Keller, K. H. (2012a). Gapminder: An AP Human Geography Lab Assignment. The Geography Teacher, 9(2), 60-63. doi:

Keller, K. H. (2012b). Gapminder: An AP Human Geography Lab Assignment. The Geography Teacher, 9(2), 60-63. doi:

Kim, M. J., & Maher, M. L. (2008). The impact of tangible user interfaces on spatial cognition during collaborative design. Design Studies, 29(3), 222-253. doi:

Klum, S., Isenberg, P., Langner, R., Fekete, J.-D., & Dachselt, R. (2012). Stackables: Combining Tangibles for Faceted Browsing. Proceedings of the International Working Conference on Advanced Visual Interfaces, 241-248. doi:

Konkel, M. K., Ullmer, B., Shaer, O., & Mazalek, A. (2019). Envisioning tangibles and display-rich interfaces for co-located and distributed genomics collaborations. Proceedings of the 8th ACM International Symposium on Pervasive Displays, 1-8. doi:

Lakin, J., & Wai, J. (2020). Spatially gifted, academically inconvenienced: Spatially talented students experience less academic engagement and more behavioural issues than other talented students. British Journal of Educational Psychology, 90(4), 1015-1038. doi:

Langner, R., Augsburg, A., & Dachselt, R. (2014). CubeQuery: Tangible Interface for Creating and Manipulating Database Queries. Proceedings of the Ninth ACM International Conference on Interactive Tabletops and Surfaces, 423-426. doi:

Le, D.-T. (2013). Bringing Data to Life into an Introductory Statistics Course with Gapminder. Teaching Statistics, 35(3), 114-122. doi:

Marshall, P. (2007). Do Tangible Interfaces Enhance Learning? Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 163-170. doi:

Mehta, M., Arif, A. S., Gupta, A., DeLong, S., Manshaei, R., Williams, G., Lalwani, M., Chandrasekharan, S., & Mazalek, A. (2016). Active Pathways: Using Active Tangibles and Interactive Tabletops for Collaborative Modeling in Systems Biology. Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces, 129-138. doi:

Melcer, E. F., Hollis, V., & Isbister, K. (2017). Tangibles vs. Mouse in Educational Programming Games: Influences on Enjoyment and Self-Beliefs. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 1901-1908. doi:

Schneider, B., Jermann, P., Zufferey, G., & Dillenbourg, P. (2011). Benefits of a Tangible Interface for Collaborative Learning and Interaction.

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., & Pea, A. D. (2015). 3D tangibles facilitate joint visual attention in dyads. International Conference on Computer Supported Collaborative Learning (CSCL), 158-165.

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., & Pea, R. (2016). Using Mobile Eye-Trackers to Unpack the Perceptual Benefits of a Tangible User Interface for Collaborative Learning. ACM Transactions on Computer-Human Interaction, 23(6), 39:1-39:23. doi:

Shaer, O., & Hornecker, E. (2010). Tangible User Interfaces: Past, Present, and Future Directions. Found. Trends Hum.-Comput. Interact., 3(1-2), 1-137. doi:

Skulmowski, A., Pradel, S., Kuehnert, T., Brunnett, G., & Rey, G. D. (2016). Embodied learning using a tangible user interface: The effects of haptic perception and selective pointing on a spatial learning task. Computers & Education, 92-93, 64-75. doi:

Tognoli, N., & Chavez Gumaraes, J. A. (2019). Provenance as a Knowledge Organization Principle. Knowledge Organization, 46(7), 558-568. doi:

Urrutia, F. Z., Loyola, C. C., & Marín, M. H. (2019). A Tangible User Interface to Facilitate Learning of Trigonometry. International Journal of Emerging Technologies in Learning (IJET), 14(23), 152-164. doi:

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial Ability for STEM Domains: Aligning Over 50 Years of Cumulative Psychological Knowledge Solidifies Its Importance. Journal of Educational Psychology, 101(4), 817-835. doi:

Wetteman, R., & White, T. (2019). The Internet is Unavailable (Research Note No. T103; pp. 1-5). Nucleus Research.

Xie, L., Antle, A. N., & Motamedi, N. (2008). Are Tangibles More Fun?: Comparing Children’s Enjoyment and Engagement Using Physical, Graphical and Tangible User Interfaces. Proceedings of the 2Nd International Conference on Tangible and Embedded Interaction, 191-198. doi:



  • There are currently no refbacks.

Copyright (c) 2022 Espacio, Tiempo y Educación

ISSN: 2340-7263

DOI prefix: 10.14516/ete


FahrenHouse: Salamanca, Spain

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)